svr FolderOpen a terminal on your local machine and connect to the JADE HPC system using SSH:
ssh your_username@jade_hpc_address
Once logged in, load the Anaconda module to use conda for managing Python environments:
module load python/anaconda3
source $condaDotFile
Create a new conda environment with the required Python version. For example, if you need Python 3.8:
conda create -n <conda_env_name> python=3.8
Activate the newly created environment:
source activate <conda_env_name>
<aside> <img src="/icons/info-alternate_yellow.svg" alt="/icons/info-alternate_yellow.svg" width="40px" /> ml_dev_env - PhD ML project environment
</aside>
Install the necessary Python packages. For example, if you need numpy, pandas, scikit-learn, and tensorflow:
conda install numpy pandas scikit-learn
conda install -c conda-forge tensorflow
If a package is not available via conda, use pip:
pip install <some_package>
Create a submission script (submit_devel.sh) for your job. This script will load the Anaconda module, activate the environment, navigate to the svr folder, and run your Python code.